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Analysis of front interaction and control in stationary patterns of reaction-diffusion systems
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We have analyzed the stability of one-dimensional patterns in one- or two-variable reaction-diffusion sys-
tems, by analyzing the interaction between adjacent fronts and between fronts and the boundaries in bounded
systems. We have used model reduction to a presentation that follows the front positions while using approxi-
mate expressions for front velocities, in order to study various control modes in such systems. These results
were corroborated by a few numerical experiments. A stationary single front or a pattern withn fronts is
typically unstable due to the interaction between fronts. The two simplest control modes, global control and
point-sensor control~pinning!, will arrest a front in a single-variable problem since both control modes, in fact,
respond to the front position. In a two-variable system incorporating a localized inhibitor, in the domain of
bistable kinetics, global control may stabilize a single front only in short systems while point-sensor control
can arrest such a front in any system size. Neither of these control modes can stabilize ann-front pattern, in
either one- or two-variable systems, and that task calls for a distributed actuator. A single space-dependent
actuator that is spatially qualitatively similar to the patterned setpoint, and which responds to the sum of
deviations in front positions, may stabilize a pattern that approximates the desired state. The deviation between
the two may be sufficiently small to render the obtained state satisfactory. An extension of these results to
diffusion-convection-reaction systems are outlined.

DOI: 10.1103/PhysRevE.63.056120 PACS number~s!: 82.40.Ck, 05.45.2a
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I. INTRODUCTION

The problem of finite-dimensional control of systems th
are described by partial-differential equations~PDE! has
been attracting considerable attention, especially for appl
tions of reaction and diffusion@1–4# and fluid-flow processes
@5#. The traditional approach in chemical engineering pro
lems of control is to use a finite, preferably small, discre
zation of the underlying PDE@6,7#. Sharp spatial variations
in the state variable make the use of large discretization m
els unavoidable. The dissipative nature of the underly
PDEs and numerous studies of the spectrum of the eigen
ues of the linearized system suggest that the long term
namics is low dimensional. Several approaches for mo
reduction have been suggested; recent approaches
based on the central manifold theorem@8,2#. While these
approaches may be powerful, they do not support any qu
tative understanding of the system behavior to suggest
cient modes of control.

Stationary fronts are key elements in the emergence
stationary or moving patterns and following their motion is
natural approach for model reduction. Various mechanis
have been suggested for the emergence of stationary pat
in reaction-diffusion systems, and some are reviewed be
While analytical results exist for a single front in unbound
systems@9,10#, the behavior of a realistic bounded~finite-
size! system with several fronts cannot be predicted anal
cally in most cases; moreover, numerical simulations are
dious as front motion and front interaction is extremely slo

The purpose of this work is to derive approximate so
tions for the stability and dynamics of stationary patterns
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a bounded one-dimensional reaction-diffusion system,
apply them in various control procedures. The stabil
analysis is based on model reduction to a model for fr
positions and on approximate solutions of front velocity a
of front interaction under conditions where separations
tween fronts is finite. Our interest in the control of the
systems stems from the novelty of the problem and from
expectations that control methodologies developed
diffusion-reaction systems may be applied for certain con
problems that arise in diffusion-convection-reaction syste
@11#, as we comment in the conclusion of this work. T
patterns emerge or are destroyed due to the interaction o
activator ~x! with various control modes~l! or various in-
hibitors ~y!. The activator, typically described by th
reaction-diffusion equation

xt2xzz5 f ~x,y!1l, xzu05xzuL50, ~1a!

may admit front solution when the source function„f (x,y)
1l50… is bistable. We verify that a single stationary fro
or a pattern of several stationary fronts of system~1a! is
generically unstable due to front interaction. We then stu
various stabilizing and destabilizing effects and approxim
the boundaries of existence of such fronts and patterns u
these conditions.

The destabilizing forces we address are due to front in
action or due to an inhibitor~y!, which is localized and slow
(«!1), which typically accounts for oscillatory kinetics i
high- and low-pressure catalytic systems@12#. Its description
is as follows:

yt5«g~x,y!. ~1b!

Reaction-diffusion systems with a localized inhibitor@i.e.,
Eq. ~1!# may admit stationary front solutions, whenf (x,y)
1l5g(x,y)50 is bistable, but these are highly unstab
©2001 The American Physical Society20-1
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Stabilizing effects can be imposed by external control or
long-ranged inhibitors, as described in the following.

~i! Instantaneous global interaction or global control,
which the actuator responds to deviations of the spati
averaged sensor like

l5B~xs2^x&!, ~2!

where ^ & denotes the spatial average andxs is the desired
setpoint, may stabilize a single front. In that case the setp
is a parameter and with largeB the system instantaneous
adjusts itsl to satisfy the setpoint. A strong interaction in
long system will eliminate an unstable homogeneous s
tion. That implies that a fixed part of the surface~half in the
symmetric case! lies in the upper state. Patterns due to su
interaction were analyzed and simulated to account for
servations of patterns in electrochemical systems@13#, in
catalytic wires or ribbons controlled to maintain a const
resistance@14,15#, in catalytic disks suspended in a we
mixed fluid phase and in dc-discharge systems~see@12# for a
recent review of catalytic systems!. Global interaction in
chemical reactors may be induced by convection or by m
ing of the reactant fluid phase.

~ii ! In the limit of infinite gain (B→`) the global-
interaction condition may be incorporated into the origin
equation, by integrating Eq.~1a! and expressingl, to form
an integrodifferential equation of the formxt2xzz5 f (x,y)
2^ f (x,y)&; ^x&5xs .

Equations~1! and ~2! have been extensively investigate
as a model of the catalytic oscillator subject to global int
action or global control. We test here the efficiency of glob
control for stabilizing desired patterns. We mention bel
three other mechanisms that may lead to stationary patt
but we do not employ them here: In a system with nonu
form properties,l(z), gradients inl may arrest a front of an
opposite inclination and a periodicl(z) may stabilize a sta-
tionary multifront pattern. In the classical Turing mechanis
patterns emerge when the activator~x! is short-ranged while
the inhibitor’s~l! diffusivity is sufficiently large to arrest the
propagation of fronts of the activator. Other mechanisms
volve convection@16# and the behavior of such a system w
be studied elsewhere.

We are looking now to design a controller of system~1!
with as few sensors as possible and possibly with a sin
actuator. While continuous measurements of the spa
state-variable~e.g., temperature! profile may be possible in
certain cases, it is still technically challenging in most ca
and we rely on localized sensors or on average proper
The controller we design is of the form

l2l* 5BA@x~ t !#c~z!. ~3!

Technically it implies thatc(z) should be constructed onc
in the required space-dependent shape. In chemical rea
this can be implemented by installing spatially varying res
tance if resistive heating is employed, or by varying the he
transfer area when heat exchange is employed.
05612
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We will consider uniforms and space-dependent act
tors. We consider first the simplest controller structure
space independent actuatorc51. The simplest controller
should be based on a single measurement.Global control,
A(t)5xs2^x&, is based on certain average property, as d
cussed above. In apoint-sensorcontrol x is measured at a
single point Z* , preferably at the front position,A(t)
5xs(Z* )2x(Z* ). This control mode is sometimes referre
to aspinning. In a single-front pattern, and for small devia
tions, the two control modes actually respond to the fro
position, as we show below in the analysis of the two str
egies. We then turn to study space-dependent actua
where we try to stabilize a certain pattern with a qualitative
similar actuator.

We employ below the simplest oscillatory kinetics mod
i.e., a cubic activator source function

f 52x31x1y

coupled with a linear balance on the inhibitor„g(x,y)….
Many of the numerical and analytical studies of patterns d
to long-range interaction typically employed such kinet
@14,17–20# and showed that patterns simulated with a re
istic model, using a bistable activator kinetic balance an
monotonic inhibitor balance@15#, were quite similar to those
obtained with the cubic kinetics. The advantages gained
analyzing this simple model is that it obeys certain symm
tries, which will be employed for pattern classification, a
that several of its asymptotes, including the fixedl case,
have been analyzed before for one- or two-dimensional s
tems@18#.

The structure of this work is the following: In Sec. II w
derive an approximate solution for front velocity in
bounded system and then use it to study the stability of p
terns with one, two, or any number of fronts of the sing
variable problem@Eq. 1~a!# without or with various stabiliz-
ing modes. In this section we consider the two cont
strategies with a uniform actuator. Control strategies for s
bilizing multifront patterns are implemented in Sec. III; sp
cifically we try to develop a methodology that uses a sin
space-dependent actuator and as few and as simple se
as possible. In Sec. IV we introduce the slow and localiz
inhibitor ~y! and study its effects and the relevant cont
procedures.

II. FRONT INTERACTION „SINGLE VARIABLE …

While certain analytical and approximate results exist
the velocity of fronts in systems of the formxt2xzz
5 f (x,l), these apply typically for an unbounded~infinitely
long! system with fixed coefficients~l!. Since we are inter-
ested in the behavior of finite-size systems, and in syste
where the distance between adjacent fronts is not too la
we review now the correction to front velocity.

In a frame of a coordinate moving with the front,

u5z2ct,

the system is described by
0-2
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ANALYSIS OF FRONT INTERACTION AND CONTROL . . . PHYSICAL REVIEW E 63 056120
2cxu2xuu5 f ~x,l!. ~4!

If c` is the front velocity in an infinitely long system an
x2 , x1 are the stable solutions off (x,l)50, which are also
the edge states in an unbound system, then after multipl
Eq. ~4! by xu and integrating we find

2c`E
2`

1`

xu
2du2

1

2
xu

2U
2`

`

5E
x2

x1

f ~x,l!dx. ~5!

For the derivation below we impose no-flux conditions at
boundaries and the second term in the equation abov
zero. Analytical expressions exist in a few cases only, bu
us assume that the front is atZ and its shape is described b
x5x`(u2Z).

Strictly speaking, fronts of constant speed and shape
not exist in bounded systems, but we assume the syste
be sufficiently large. Now, to find the interaction betwe
two fronts, or similarly the interaction with the walls, whe
no-flux conditions apply, let assume the existence of t
fronts, one atz5Z1 separating a ‘‘cold’’ zone on the lef
from a ‘‘hot’’ one and another, its mirror image, atZ2 ~Fig.
1!. The corresponding solutions, in the absence of a sec
front, would have beenx15x`(u2Z1) and x25x`(Z2
2u). A reasonable approximation of a pulse composed
two mirror-image fronts, is

x~u!5x1~u;Z1!1@x2~u;Z2!2x1# ~6!

since it describes correctly each front individually, as th
separation diverges to infinity. Without loss of generality
us place the fronts atZ152Z2 , so thatx(u) acquires its
maximum atu50 due to symmetry. We can integrate no
Eq. ~4! from 2` to 0. Substitutingx(u) from Eq. ~6! and
treating the correction as a perturbation and expanding
right-hand side of Eq.~4!, as f (x)5 f (x1)1 f x(x1)@x2(u)
2x1#, which is valid in the vicinity ofZ1 , we can substitute
x(u) into Eq. ~5! and find

FIG. 1. Front interaction in a finite domain: the figure shows o
front ~solid line! at Z1 and another imaginary mirror-imaged on
~broken line! at Z2 ~dimensionless variables and parameters!.
05612
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2cE
2`

0

xu
2du2

1

2
xu

2U
2`

0

5E
2`

0

f ~x,l!
dx

du
du;E

2`

0

f ~x1 ,l!
dx1

du
du

1E
2`

0 d f

dx
~x1 ,l!@x22x1#

dx1

du
du

1E
2`

0

f ~x1 ,l!
dx2

du
du. ~7!

Now, for conditions wherec`50 the right-hand side can b
calculated if the profile is known~as we show below for a
cubic f !. The first term on the left can be approximated w
x1(u), since^x1u

2 & is positive and the correction due tox2 is
small. Otherwise, the right-hand side can be approximate

2c^xu
2&5 f x~x1!@x1~0!2x1#@x2~0!1x1~0!/223x1/2#.

~8!

When the front profile is not known we note that far from t
front the profile approaches asymptotically the steady so
tions of f (x,l)50 as

u2Z1→`, ~x12x!5C1 exp@2p1~u2Z1!#,

2p15c1Ac224 f x~x1!,
~9!

u2Z1→2`, ~x2x2!5C2 exp@p2~u2Z1!#,

2p252c1Ac224 f x~x2!,

wherep2 and2p1,0 are the eigenvalues of Eq.~4! at the
two stable states~x2 and x1!. Now, for the symmetry as-
sumed for the two fronts,x2(z)5x1(2z), C15C2 . Con-
sequently, x12x1(0)5C1 exp(p1 Z1)5x12x2(0) ~recall
that Z1,0!, and

c;2C1
2 3 f x~x1!

2^xu
2&

e22p1Z1. ~10!

Thus, in the general multifront case the velocity of an a
cending front Eq.~10! can be generalized to account fo
interactions on the left and the right

c2c`5a2e22p2Zl2a1e22p1Zr, ~11!

whereZl Zr are the distances~in absolute value! to the clos-
est boundaries on the left and right, respectively. When
other front exists on the left or the right thanZl ,r is half the
distance between the fronts.

A. Approximate front profile

For the simple cubicf 52x31x1l that we use below,
and aroundl50, conditions at which the front is stationar
in an infinitly long system (c`50),

e

0-3
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MOSHE SHEINTUCH AND OLGA NEKHAMKINA PHYSICAL REVIEW E 63 056120
x`56tanh
u2Z

&
, x15tanh

u2Z1

&
, x25tanh

Z22u

&
.

~12!

The velocity for the two fronts situation described above
obtained by substitution in Eq.~10!, yielding for the velocity
of the first front

2c15
24

&
e2~Z22Z1!& ~13!

while c25c1 due to symmetry. A rigorous derivation of th
expression can be found in@21#. To test this expression w
simulated the motion of a front in a bounded system~of size
L520! and calculated its velocity~at the inflection point! as
the distance from the edge is varying, showing excell
agreement with Eq.~13! ~Fig. 2!. For the present case
f x(x2)5 f x(x1)522 and from Eq.~9! p6

2 ;(24 f x)/452
where we assumed thatc! f x ~recall thatc`50 at l50!;
thus,a25a15a, p25p15p.

The velocity of front solutions of Eq.~1a! with f 5(x1

2x)(x2xi)(x2x2), in an infinitely long system, is

c`5~x11x222xi !/&,

~see @10#!. The upper and lower branches off (x,l)50,
l!1, are approximately described byx6[x1,3;611l/2
~by Taylor’s expansion! and the intermediate solution isxi
;2l, and for smalll,

c`53l/&[bl.

The front width ~D! is approximated as the inverse slo
@(x12x2)/xu#, which can be determined from2xuu
5 f (x,l) by multiplying it by 2xu and integrating@as in Eq.
~5!# from u52` to 0 or xu

2u052* f (x,l)dx, where the
boundaries of integration inx are x2 and xi;2l. With
l;0 we find D;2&. @A simpler approach for the cubi
source function is to use the analytical profil
x5tanh(u/&).#

FIG. 2. Comparison of simulated~stars! and approximated
~solid line! front velocity as a function from its distance from th
boundary~single-variable system,L520; dimensionless variable
and parameters!.
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B. Front interaction

We want to study whether a pattern incorporating o
two, or several stationary fronts is stable and what kind
control measures can be applied to stabilize it. We show
in the absence of control the fronts are attracting or repel
each other and that global control can stabilize a single fr
but is unable to stabilize a multifront pattern as fronts w
move in a way that maintains the setpoint.

Consider a multifront system, with fronts atZ1 ,Z2 ,...,
etc. In the absence of global or local control and in a unifo
system we can approximate the position of all fronts a
their interaction by the set of ordinary differential equati
~ODE!

dZi

dt
56c~Zi 21 ,Zi 11 ,l!, ~14!

where l is a space-independent parameter that affects
motion. A positive velocity denotes expansion of the upp
state; the plus~minus! sign in Eq.~14! applies then to a front
separating a high~low! state on the left from a low~high!
one on the right~Fig. 1!; the velocity of an ascending front i
described by Eq.~13! while for that of a descending front w
should exchangeZl andZr . We will always assume that th
first front separates a low state from a high one so that
minus/plus signs apply to fronts of odd/even numbers, wh
numerating the fronts from the left. Equation~14! can be
written now ~wherea25a15a, p25p15p! as

dZi

dt
56c`2ae22pZl1ae22pZr ~15!

with positive or negative signs as before. Equation~15! is
analyzed below to study front interaction by analyzing t
stability of a single stationary front and of two orn such
fronts, in the absence or presence of various control mo

C. Single front

Consider now a single front solution atz5Z1 , separating
a lower state~on the left! from a higher one. The front posi
tion is described now by Eq.~15! with Zr5L2Z1 , or

dZ1

dt
52c„Z1 ,l~Z1!…5F~Z1!

~16!
c5c`1ae22pZ12ae22p~L2Z1!.

Now, we consider the control-free system and several mo
of interaction or control and analyze the system dynamics
each case.

~a! In the absence of controlthe stationary front position
(c`50) is unstable since ]F/]Z152pae22pZ

12pae22p(L2Z).0 whereZ5Z1s , the stationary front po-
sition; for this symmetric case, where the front is equa
attracted to the left and right boundariesc50 whenZs5L
2Zs and ]F/]Z154pae2pL. The front will move then to
one of its boundaries, accelerating as the boundary is
proached.
0-4
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~b! We show first that in the generalperfect global-
control case (B→`) the control may stabilize the front: Th
space-averagedx can be approximately determined from

L^x&5~Z12D/2!x2~l!1~L2Z12D/2!x1~l!1D^xfront&
~17!

while the setpoint follows, similarly,

Lxs5~Z1s2D/2!x2~l* !1~L2Z1s2D/2!x1~l* !

1D^xfront&, ~18!

where l* is the set value of the parameter that induce
stationary front. Assuminĝxfront&5(x11x2)/2 and expand-
ing x6(l)5x6(l* )1(dx6 /dl)(l2l* ), where
(dx6 /dl) is evaluated alongf 50, and subtracting the two
equations we find

l2l* 5K~Z12Z1s!,

K5
x1~l* !2x2~l* !

Z1s~dx2 /dl!1~L2Z1s!~dx1 /dl!
. ~19!

While global control operates as feedback control of
front position, the gain power declines withL in this case;
since the destabilizing effect of the boundaries declines
ponentially @Eq. ~16!# perfect global control is sufficient to
stabilize the front.

~c! Consider now the general~finite B! case ofglobal
interaction. In that case we need to estimate the depende
x6(l). That may not be simple for arbitrary kinetics and w
pursue it for case withcubic kinetics:Sincex6;611l/2
and L^x&5(Z12D/2)(211l/2)1(L2Z12D/2)(11l/2)
1D(2l/2), where the last term is the approximate value
the front, then ^x&5l/21122Z1 /L. Thus l/25^x&21
12Z1 /L, but we also setl5B(xs2^x&), yielding

l5
B

11B/2
~xs2112Z1 /L !. ~20!

The front position is stable when]F/]Z1,0, where

]F

]Z1
52

dc`

dl

dl

dZ1
12ape22pZ112ape22p~L2Z1!,

dc`

dl
5

3

&
,

dl

dZ1
5

4

L

B

21B
. ~21!

In the symmetric case (xs50) the front is positioned at the
center,Z1s5L/2, and

]F

]Z1
524b

B

~21B!L
14ape2pL, b5

3

&
. ~22!

~d! In point-sensor control, with small deviations from the
setpoint, we can approximatex(z);xf1(dx/dz) f(z2Z1s)
wherexf5x(Z1s) is the state at the front position,dx/dz is
evaluated at the front, and we have ignored changes du
the control parameter. Consequently,
05612
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x~Z* !5xf1~dx/dz! f~Z* 2Z1!,

xs5xs~Z* !5xf s1~dx/dz! f s~Z* 2Z1s!,

and assuming that the front shape is unchanged~xf5xf s ,
etc.!, the control strategy leads to

A~ t !5xs2x~Z* !52~dx/dz! f@Z1s2Z1#,
~23!

l2l* 5K~Z12Z1s!, K5B~dx/dz! f ,

where we usually setZ1s5Z* .
The gain with the point-sensor control is independent

the system length, and it can stabilize any single-front p
tern of single-variable systems. Note that in the general c
the actual gain depends on the sensor location, and the
est gain is achieved at the front position, where we set
sensor. Adjusting a system to a new set front position w
require us to relocate the sensor location.

D. Two fronts

Consider a two-front pattern, separating domains w
low, high, and low states, when numerating them along
system coordinate. The steady front positions for this sy
metric case, areZ1s5L/45L2Z2s , and the dynamics is de
scribed by

dZ1

dt
52c1~Z1 ,Z2 ,l!5F1~Z1 ,Z2 ,l!,

dZ2

dt
5c2~Z1 ,Z2 ,l!5F2~Z1 ,Z2 ,l!,

~24!
c15c`1ae22pZ12ae2p~Z22Z1!,

c25c`2ae2p~Z22Z1!1ae22p~L2Z2!.

We consider now the dynamics of the system in the abse
of control and with global interaction or control of infinit
gain, showing that in both cases the steady structure
scribed above is unstable

~a! To show that this structure is unstable in the abse
of control (l50), we conduct a linear stability analysis o
Eq. ~24! to find that the Jacobian matrix

J5
]~F1 ,F2!

]~Z1 ,Z2!
5ape2pL/2S 3 21

21 3 D ~25!

has positive eigenvalues. The fronts will either attract or
pel each other until a homogeneous state is established.

~b! Applying perfect global control~^x&5xs , infinite B!
aimed at setting L^x&5(Z12D/2)x21(Z22Z12D)x1

1(L2Z22D/2)x212D^xfront&5Lxs , we find that withx6

5611l/2 thenl52(Lxs1L12Z122Z2)/L and

J5AS 21 1

1 21D 1CS 3 21

21 3 D , A5S dc`

dl

4

L D ,

C5~ape2pL/2!, ~26!
0-5
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MOSHE SHEINTUCH AND OLGA NEKHAMKINA PHYSICAL REVIEW E 63 056120
showing that for all set of parameters the system is unst
~its eigenvalues are 2C, 22A14C!. A two-front structure
cannot be stabilized in a simple way.

E. Local ignition of a cold system

A transition from the lower to the upper state~or vice
versa! can be induced by applying a local perturbation in t
form of a pulse. How wide should this pulse be? If we vie
it as two fronts, and they are a distance of 2Z apart in an
infinitely long system, then front velocity will approximatel
follow Eq. ~24! and we require thatc25c`(l)2ae22pZ

.0, providing us with the minimal value ofl that will as-
sure expansion of the pulse. This expression was comp
with numerical results that located the boundary of an
panding and shrinking domains, after a symmetric pulse~as
in Fig. 1! was imposed initially. Excellent agreement is o
tained with numerical results~Fig. 3!.

F. n fronts

The system is described now by Eq.~15! with

Zl5Zi2
Zi1Zi 21

2
5

Zi2Zi 21

2
except i 51, Z15Z1 ,

~27!

Zr5
Zi1Zi 11

2
2Zi5

Zi 112Zi

2
except

i 5N, Zr5L2ZN .

~a! In the absence of control (l5c`50) the stationary
front positions equally divide theL size system and are de
scribed by Z1s5L/2n, Z2s53L/2n, Zis5(2i 21)L/2n.
The Jacobian matrix of Eqs.~12! and~27! is tridiagonal with

FIG. 3. The simulated~stars! and approximatedl value required
for igniting a single-variable system by perturbing it in the form
a pulse~shown in Fig. 1! of size Z22Z1 and the corresponding
midpoint x value~L520; dimensionless variables and paramete!.
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ape2pL/n 5S 3 21 0 0 • 0

21 2 21 0 • 0

0 21 2 21 • 0

0 0 21 2 • 0

• • • • • •

0 0 0 0 21 3

D . ~28!

For n54, for example,

1

ape2pL/n 5S 3 21 0 0

21 2 1 0

0 21 2 21

0 0 21 3

D . ~29!

A stability analysis of these systems reveals that then-front
stationary pattern is unstable. With time fronts will coales
and disappear, pair by pair, until a homogeneous steady
is established.

~b! Can infinite-gain global control stabilize such a pa
tern? Qualitatively we know that it is impossible since t
control cannot affect the motion of a pair of adjacent fron
moving in the same direction. The overall balance~for an
evenn! is

L^x&5~Z12D/2!x21~Z22Z12D!x11~Z32Z22D!x2

1¯~L2Zn2D/2!x21nD^xfront&5Lxs ~30!

with x65611l/2 and^xfront&5(x11x2)/2 yields

l

2
5xs111

2~Z11Z31¯2Z22Z42¯ !

L
. ~31!

When the distances between the fronts are sufficiently la
the stability will depend onl only. The system is describe
by dZi /dt56c`(l). Note thatd(Zi1Zi 11)/dt50 and the
control cannot command the separation between fronts.

Thus, a structure ofn stationary fronts (n.1) cannot be
stabilized by global control, even with sufficient separati
between the front, and we expect this conclusion to hold
finite separation. In the absence of control even a single
tionary front cannot be stabilized.

G. Stabilizing asymmetric fronts

Let us consider a single stationary front solution of Eq
~1! and ~2! and study the effect of varyingxs . The
asymptotic solution in a large system has been outlined
several papers@22# showing that asxs is varied the front
position changes in order to maintain the setpoint but
system maintainsl50 in order to maintain a stationary fron
(c`50). Numerical solutions for a finite system have al
been outlined and the bifurcation diagram ofl vs ^x& has
been portrayed showing stable and unstable branches o
lutions @23#. In the unstable solution the front rests close
the edge but the attraction exerted by the edge is stron
than the stabilizing effect of the controller. This contr
scheme has been applied in numerous studies of cata
0-6
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kinetics on thin wires in order to maintain ‘‘isothermal’’ con
ditions, before it was realized that this scheme leads to s
metry breaking in systems that admit bistability.

Here we want to approximate the solution to this syst
and find the shortest system that maintains a single statio
front. The front position is described by Eq.~16! with l in
Eq. ~20! and the boundary of stability of the front is given b
setting Eq.~21a! to zero. The two conditions can be writte
as

~a! E21
b

2
~Lxs2L12Zs!E2150,

E5ep~L22Zs!, b5
4b

aL

B

B12
epL,

~32!
~b! 2pE22bE12p50.

Solving Eq. ~32a! will yield the front position while~32b!
yields the stability boundary. The latter exists only forb2

.16p2, which yields the shortest system that can be sta
lized, and the corresponding front position is described
E5b/4p.

III. CONTROL STRATEGIES

Recall that we are looking now to design a controller w
as few sensors as possible and possibly with a single actu
of the form

l2l* 5BA@x~ t !#c~z!.

We have already tested two control strategies with unifo
~homogeneous! actuators: The actual effect of both strateg
on a single-front pattern can be described by

l2l* 5K~Z12Z1s!

@Eqs. ~19! and ~20!# and both strategies cannot stabilize
multifront pattern. Global control is a simple approach tha
insensitive to front position but its gain~K! is limited in large
systems. Point sensor control is another simple appro
with a gain that is independent of system length but is hig
sensitive to the front position.

The available controller design methods teach us how
construct a controller for multifront patterns. That typica
requires several actuators. We consider now a control s
egy with asinglenonuniform~heterogeneous! actuator. This
inclination controluses an actuator that imitates the patte
structure, i.e., the roots ofc(z)50 and the slopes ofc are
identical to those ofxs(z). That will stabilize the front, if
A(t).0, since any front motion will be counteracted. In t
inclination control of a single-front pattern let us choo
c(z)5H(z2Z1s)21/2, whereH(z) is the Heaviside func-
tion, or c(z)52cos@pz/L#. This control strategy is too
elaborate for a single-front structure and is tested h
mainly to apply it for multifront patterns.

Note that nowl is space dependent and we need to c
sider the expression for front velocity. Whenl(z) is slightly
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space dependent, we can expandf (x,l)5 f (x,l0)1 f l(l
2l0) and the front velocity in a finite but sufficiently lon
system is approximately

2c`^xu
2&5E

x2

x1

f ~x,l0!dx1E
0

L

f l~l2l0!
dx

dz
dz, ~33!

where dx/dz is approximated from the front atl0 . Note
that, if dx/dz is an even function, as in the cubicf case, and
for odd l(z), i.e., l(Zs2z)52l(z2Zs), the correction to
the front velocity is nil. Note, that forZ1s5L/2 the forcing
control is an odd function and will not affect the front pos
tion.

Now, suppose the front deviates from its desired posit
Z1s to certain Z1 or alternately suppose thatc is shifted
relative to its steady position: Then, with the step functi
c(z)5H(z2Z1s)2 1

2 the second term on the right of Eq
~33! is simply the integral over the displacement

E
0

L

~l2l0!
dx

dz
dz

5BA~ t !E
Z1

Z1s dx

dz
dz5BA~ t !@x~Z1s!2x~Z1!# ~34!

and for small deviations the correction is (dx/dz) f(Z1s
2Z1) ~recall thatf l51 here!.

Now, A(t) may be chosen again to follow a globa
control or a point-sensor strategy but withA(t).0, e.g.,
A(t);@xs2x(Z* )#2, and following Eq. ~32! A(t);(Z1s
2Z1)2 and for small deviationsl5BA(t)c(z);(Z1s
2Z1)3. While this term will not affect the linear stability
analysis it will affect the motion and arrest the front wh
the cubic term is comparable to the linear one. To anal
this situation note that there usually exists a destabiliz
force, which for small deviations is of the linear form
n(Z1s2Z1). @The destabilizing force is either due to edg
effects, Eq.~16!, or due to other effects such as a localiz
inhibitor as we will demonstrate in Sec. IV.# The stabilizing
force, from Eq.~34!, is of the formBb(Z1s2Z1)3, whereb
is a constant@;(dx/dz) f

2#. Thus

d~Z1s2Z1!

dt
5c5n~Z1s2Z1!2Bb~Z1s2Z1!3. ~35!

Simple inspection shows that the desired solutionZ1
5Z1s is unstable, but there exists another solution at (Z1s
2Z1)25n/Bb, with a correspondingl5Bb(Z1s2Z1)3

@5n3/2/(Bb)1/2# which is stable. This approach leads, the
fore, to a different steady-state profile, but with increas
gains ~B! the difference between these steady states dim
ishes (Z1s2Z1→0,l→0).

These results were verified by simulations of the f
reaction-diffusion equation~1a! subject to control@Eq. ~3!#
with c(z)5H(z2Z1s)21/2 starting with a small perturba
tion to the front solution. The simulations@Fig. 4~a!# show
that indeed the front is arrested by the control, and the p
cess is faster with larger gain (B), but the corresponding
front position (Zf) and l deviate slightly~1022 to 1023!
0-7
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FIG. 4. Stabilizing a one-~a!, two- ~b!, and four-front~c! pattern~L520, 40, and 40, respectively! in a single-variable model using
single space-dependent Heaviside form actuatorC. Simulations show the stationary and perturbed patterns~first rows, solid and broken
lines! and the response to a small perturbation of the left-front position~Z1 , second row!, the control value~third row!, and the front velocity
~fourth row!. „Various lines present the comparison of various control parameters. Diagram~2! presents the effect ofB with 0.01 ~dash-
dotted line!, 0.1 ~broken line!, and 1.0~solid line! with a sensor positioned at the front (Z510) orB50.1 and sensor atZ58 ~dotted line!.
Diagram~3! shows the effect of the control mode@Eqs.~37a! ~solid line!, ~37b! ~broken line!, ~37c! ~dash-dotted line!, and~37d! ~dotted
line!, B51.0#. Diagram~4! shows the effect ofB, the notation as in~a!… ~dimensionless variables and parameters!.
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from the desired values of the unstable stationary fr
~wherel should be nil!. The difference between the setpoi
and the new front is not noticeable. Placing the sensor so
what away from the desired front position~at z58 instead of
10! will result in a slower convergence, but the system w
approach the same solution.

While some of the methods described earlier can contr
single front in its position, they may not work with a two- o
n-front pattern. Global control was shown already to be u
successful for this task@Eq. ~22!#. For a two-front pattern we
may opt to choose one of the following forms, a square w
or a cosine function:

~a! c5@H~z2Z1* !H~Z2* 2z!2 1
2 #,

~36!
~b! c52cos~2pz/L !.

As we show this approach will not be able to stabilize t
desired pattern, for the reasons described above for a sin
front pattern, but may yield a sufficiently close solution.A(t)
should be positive definite and should be sensitive to moti
of all fronts, e.g.,

A~ t !5^~x2xs!c~z!&, ~37a!

A~ t !5ux~Z1* !2x1su1ux~Z2* !2x2su, ~37b!
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A~ t !5@x~Z1* !2x1s#
21@x~Z2* !2x2s#

2, ~37c!

A2~ t !5@x~Z1* !2x1s#
21@x~Z2* !2x2s#

2, ~37d!

whereZ1* denotes sensors location. Equation~37a!, where^ &
denotes integration over the system, may not be sufficien
the motion of both fronts will cancel their individual effect
Equations~37b!–~37d! require two local sensors in the vicin
ity of the desired front position,Z1s ,Z2s . Equation~37b! is
not continuous in its derivatives and Eq.~37c! yields a qua-
dratic response and thus will affect the motion only at lar
deviations but will not affect the linear stability analysi
This was shown for a single front and can be shown to ap
for the other control options above as well. The approxim
analysis can be conducted by reducing the model to desc
the front position. In that case, control schemes~37b!–~37d!
above should be transformed to

~b! A~ t !;uZ12Z1* u1uZ22Z2* u,

~c! A~ t !;~Z12Z1* !21~Z22Z2* !2, ~38!

~d! A2~ t !;~Z12Z1* !21~Z22Z2* !2.
0-8
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Similar c(z) andA(t) functions will be constructed for othe
n-front patterns.

Simulations of the system, subject to space-dependen
tuators@Eq. ~37!#, starting with small perturbations to two
and four-front structures@Figs. 4~b! and 4~c!# show that in-
deed the desired state is unstable but that it can usuall
achieved with a reasonable accuracy. The choice of the
trol mode is not important and with increasing gain the
sponse is faster but the deviation from the desired stat
larger.

IV. ACTIVATOR INTERACTION
WITH A LOCALIZED INHIBITOR

We consider now the behavior of a two-variable syste
incorporating a fast activator~x! and a slow nondiffusing
inhibitor ~y! described by Eq.~1b!. This problem has been
investigated extensively since it describes various phys
systems as low- and high-pressure catalytic reactions~see
@12# for a recent review! and neural conduction. Front dy
namics, in systems with a wide separation of time sca
(«!1), can be studied, to a first approximation, by assum
that the inhibitor position is frozen. This may destabilize t
front position as explained below. Much of the analysis co
ducted above can be applied now for the two-variable~x,y!
system. Under global control, however, where the system
forced to admit a preset space-averaged value,^x&5xs , a
plethora of patterns may emerge@15#; some of these pattern
were observed in catalytic, electrochemical, and g
discharge systems@12#. The shape of stationary fronts is di
ferent from those in single-variable systems, since the inh
tor has ample time to relax and affect the front shape. T
transition from stationary to moving fronts was described
several works and may be associated with a hysteresis
@24#. For «!1, however, the transition is fast and we c
apply the results outlined above.

For simplicity we assume a linearg(x,y)

g~x,y!52gx2y. ~39!

A simple analysis of the homogeneous steady states of
~1a! and ~1b! with the specified kinetics reveals bistabli
with two stable solutions wheng, 2

3 and a unique unstabl
state forg.1; bistability exists also for23 ,g,1 but their
stability depends on«. Stationary front solutions exists fo
g,1 but they are unstable forg.«. These fronts separat
two stable states wheng, 2

3 , and their stabilization is rela
tively simple, while for 2

3 ,g,1 the limiting states may be
unstable. We focus our attention, therefore, on the form
case. The latter case will be addressed elsewhere usi
formal control approach@25#.

Single-front dynamics

For a moving front, and for sufficiently short times fo
which they5ys profile can be assumed to be frozen at t
steady-state value, we can apply the analysis condu
above. For the specific model used herel and y have the
same effect on the front position, so that for a front sepa
ing low ~on its left! and high states, we find
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x65611~l1ys f!/2, l1ys f52~Lxs2L12Z1!/L,

c`5b~l1ys f!, ~40!

where ys f is the local value at the front position and th
effect of gradients inys on the front velocity are ignored
The ‘‘frozen’’ y profile is its steady-state profile, and follow
ing the steadyx profile it will be divided into three sections
At the outer sectionsy652gx6 while at the inner section
the front slope at its inflection point isdx/dzu05D5(1
2g)& and consequentlydys /dzu052g(12g)&.

~a! In an uncontrolled system, described bydZ1 /dt
52c(Z1 ,y), the stationary front (c50) is unstable since

]F

]Z1
52

]c

]Z1
5

]c

]y

]ys

]ZU
0

12pae2pL ~41!

and both terms are positive.
~b! For a very long system, for which attraction by th

boundaries can be neglected, the front position is descr
by

dZ1 /dt52c`52b@l~Z1!1ys~Z1!#. ~42!

Under global control with infinite gain the system is stabl
when

]c`

]Z1
5bS ]l

]Z1
1

]ys

]z U
Z1

D 5bS b

L
2g

12g

&
D .0. ~43!

Obviously global control is efficient only in short systems
The effect ofpoint-sensor controlis expressed in Eq.~23!

and the front will be stable when

K2g~12g!&.0. ~44!

Thus, a single-front that connects two stable state~i.e., g
, 2

3 ! can be easily stabilized by a single point-sensor cont
This result was verified by computing the corresponding
genvalues. More sensors are required wheng. 2

3 and their
number increases withg ; the control design in this cas
requires a formal approach, as we outline in a future wo

~c! Multifront patternscannot be controlled by a singl
sensor and a single actuator. Ann-front pattern can be easily
controlled byn space-dependent actuators, each respond
to a sensor located at the front position and affecting
immediate vicinity. Ann-front pattern can be approximatel
controlled by a single space-dependent actuator@Eqs. ~36!
and ~37!# that responds to the sum of the deviation ofn
sensors; the adequacy of the approximation depends on
problem and parameters and requires some optimizatio
the control gain. One such example is shown in Fig. 5 wh
portrays the response to small perturbations in simulation
the full system@Eqs.~1a! and~1b!# subject to control of Eqs.
~3! and ~37c! with c that is either a Heaviside product@Eq.
~36a!, the solid line in the top of Fig. 5# or a modified dis-
continuous function~the broken line in the top figure! that
affects the front vicinity but its impact away from the front
diminishing. Figure 5 plots the midpoint activator valu
0-9
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MOSHE SHEINTUCH AND OLGA NEKHAMKINA PHYSICAL REVIEW E 63 056120
x(0), thecontrol effect, the left-front position, and its veloc
ity for g50.3 and 0.6~Heaviside control, dash-dotted an
broken lines! and g50.6 with the modified function~solid
line!. While all control modes induce small oscillations
position and small time-averaged values ofl, the modified
function yields more accurate results as evident from
midpoint value.

V. CONCLUDING REMARKS

We have analyzed the stability of one-dimensional p
terns in reaction-diffusion systems by analyzing the inter
tion between adjacent fronts and between fronts and
boundaries in bounded systems. We have used model re
tion to a presentation that follows the front positions, wh

FIG. 5. Stabilizing a pulse pattern (L540) in a two-variable
model using a single space-dependent actuator@c, presented in~a!,
is a Heaviside product function as in Eq.~36a!, solid line, or a
modified function, broken line#: simulation results show the state
midpoint ~b!, the control value~c!, the left-front position~d!, and
the front velocity~e! following a perturbation to the initial stead
state.@B510 andg50.3 ~dash-dotted line! and 0.6~broken line!
with c as a Heaviside function, andg50.6 with modifiedc ~solid
line!; dimensionless variables and parameters.#
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using approximate expressions for front velocities, in ord
to study various control modes in such systems. These
sults were corroborated by few numerical experiments.

The analysis of a single-variable model showed tha
single front or a pattern withn fronts is typically unstable,
due to the interaction with the walls. Two simple contr
modes based on a single sensor and a single spatially ho
geneous actuator were analyzed: Global control may or m
not stabilize such front while a point-sensor control~pinning!
will arrest this front. Both control modes, in fact, respond
front position. Neither of these control modes can stabil
an n-front pattern and that task calls for a distributed actu
tor. While a multipoint controller that incorporatesn sensors,
each signaling a controller that affects the vicinity of t
corresponding front, can stabilize such a pattern, this may
technically too complex. A single space-dependent actu
that responds to the sum of deviations in the front positio
may stabilize a pattern that approximates the desired s
The deviation between the two may be sufficiently small
render the obtained state satisfactory.

The interaction of an activator with a nondiffusing an
slow inhibitor, in a two-variable model, leads to a destabil
ing effect and poses an even larger challenge for stabiliz
stationary patterns. Such interaction may lead to bistab
or oscillations in a lumped system. For conditions that
duce a stable moving front in an uncontrolled system~which
correspond to bistability in a lumped system!, a global-
control approach is effective for arresting a single front on
in short systems, while in long ones a pulse motion w
emerge. Point-sensor control is effective for this task for a
size of the system. Both approaches fail to stabilize
n-front pattern, but the distributed actuators described ab
may be effective in this case.

The methodologies developed here can be extende
other models that incorporate patterns. In a future applica
we will consider the control of moving fronts; these are
importance in several physiological systems, most notabl
cardiac systems~e.g.,@26#!. Stationary fronts may appear i
catalytic fixed bed reactors, which are described by react
diffusion-convection systems@12#. Convection affects the
front velocity as it ‘‘pushes’’ the front downstream. In
recent work@11# we studied the stabilization of a stationa
pattern in a simple homogeneous model of a tubular catal
reactor with generic first-order exothermic reaction and re
istic Pe values~the ratio of convection to diffusion terms!
and subject to realistic boundary conditions. To admit hom
geneous solutions we considered in that work a rea
model that admits local bistability due to the interaction
nonlinear kinetics~due to exothermic and activated reactio!
with heat loss due to cooling, and with a mass genera
source, either by the preceding reaction or by mass sup
through the membrane wall~see@16# for a detailed descrip-
tion!. Linear stability analysis combined with the Galerk
method was used for state feedback control of the distribu
parameter system. The capabilities of the global control
point-sensor control to stabilize the front solution were stu
ied by the manipulation of various reactor parameters incl
ing fluid flow and feed conditions. Point-sensor control
the coolant flow~heat-loss coefficient! or coolant tempera-
0-10



r
e
th
l-
.

s
D

on
us
a

fo

r

-
x
n

s to
c-

ity
es

he
on-

at
the
the

da-
on.
m-

ANALYSIS OF FRONT INTERACTION AND CONTROL . . . PHYSICAL REVIEW E 63 056120
ture are the most effective when the temperature senso
located close to the front position. Global control and oth
strategies failed. A qualitative analysis was suggested for
selection of proper control of front stabilization and it fo
lows the principles presented here, as we discuss below

The full model studied by Panfilov and Sheintuch@11# is
too complex for a detailed analysis. The qualitative analy
presented there is based on the reduction of the original P
model to a simple ODE that describes the front positi
using an approximate expression for the front velocity. Th
the enthalpy and mass balances were argued to be line
related and qualitatively described by an equation of the
lowing form:

xt1Pexz2xzz5 f ~x,y,p* !1 f p~p2p* !,
~45!

z50, xz5Pex; z5L, xz50,

wherex ~the temperature! is the activator and the inhibito
~y! is qualitatively described by Eq.~1b!; they have singled-
out the effect of a parameter~p! to be used for control pur
poses. As we reviewed here, certain analytical results e
for the front velocity in the unbounded diffusion-reactio
system of the formxt2xzz5 f (x), with an S-shaped source
c

.

ys

-

re
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function and constant parameters. To apply these result
Eq. ~45! we need to correct the front velocity for the conve
tive ~or rather advective! flow and for the finite-size and the
boundary conditions. The edge effects on the front veloc
decay exponentially with the front distance from the edg
@Eq. ~10!#, and for the sake of simplicity we assume that t
separation is sufficiently large to ignore it. Under these c
ditions we focus on the effect of the parameterp on the front
velocity, which can be shown to be described by

dZ/dt52c52c~Pe50!1Pe. ~46!

Thus, the front velocity is affected by any parameter th
affects the velocity in the absence of convection and by
convection velocity. These effects can be analyzed using
tools developed above.
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